Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Andrei S. Batsanov, ${ }^{\text {a }}$ * William M. Dutton, ${ }^{\text {a }}$ Patrick G. Steel ${ }^{\text {a }}$ and David J. Aldous ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, and ${ }^{\mathbf{b}}$ Aventis Pharma Inc., Route 202-206, Bridgewater, PO Box 6800, New Jersey 08807, USA

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.042$
$w R$ factor $=0.097$
Data-to-parameter ratio $=13.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 3-(1-benzoyl-3-phenylaziridin-2-yl)propenoate

Figure 1
The molecular structure of (I). Atomic displacement ellipsoids are drawn at the 50% probability level and double bonds are shown in black.

Experimental

The azide alcohol $\operatorname{PhCH}(\mathrm{OH}) \mathrm{CH}\left(\mathrm{N}_{3}\right) \mathrm{C}=\mathrm{CCO}_{2} \mathrm{Et} \quad(2.48 \mathrm{~g}$, $9.51 \mathrm{mmol})$ in dichloromethane, $\mathrm{DCM}(10 \mathrm{ml})$ was added dropwise to a stirred solution of $\mathrm{PPh}_{3}(3.41 \mathrm{mg}, 13.1 \mathrm{mmol})$ at 273 K . Acetic acid $(100 \mu \mathrm{l})$ in DCM $(5 \mathrm{ml})$ was added under argon. The reaction mixture was warmed to room temperature over 3 h ; after 1 h it was cooled to 273 K and triethylamine ($4 \mathrm{~g}, 40 \mathrm{mmol}$) was added until the pH increased to 8 (measured using universal testing paper). Benzoyl chloride was added $(1.4 \mathrm{~g}, 10 \mathrm{mmol})$ and the reaction mixture was stirred for 18 h while warming to room temperature. The mixture was washed with water $(2 \times 30 \mathrm{ml})$ and the aqueous washings backextracted with DCM (30 ml). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, the solvent removed and product purified by flash chromatography (eluting with 10% ethyl acetate in petrol) to yield the title amide, (I), as a colourless crystalline solid ($1.32 \mathrm{~g}, 44 \%$). M.p. 390.7-391.1 K. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C} 74.7$, H 5.92, N 4.36%; found: C 74.71, H 5.96, N 4.51. IR, $v\left(\mathrm{~cm}^{-1}\right): 1710$ and 1654 $(\mathrm{C}=\mathrm{O}), 1623(\mathrm{C}=\mathrm{C}), 1447,1297$, 1257. ${ }^{1} \mathrm{H} \operatorname{NMR}(\delta$, p.p.m., $400 \mathrm{MHz}): 7.96(2 \mathrm{H}, d, J=6.8 \mathrm{~Hz}, o-\mathrm{Ph}), 7.3-7.6(8 \mathrm{H}, m, \mathrm{Ph}), 6.44$ $(1 \mathrm{H}, d d, J=10 \mathrm{~Hz}, 16 \mathrm{~Hz}, \mathrm{H} 3), 6.14(1 \mathrm{H}, d, J=16 \mathrm{~Hz}, \mathrm{H} 2), 4.13(2 \mathrm{H}$, $\left.q, J=7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.83\left(1 \mathrm{H}, d, J=2.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.43(1 \mathrm{H}, d d, J=10 \mathrm{~Hz}$, $\left.2.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 1.23(3 \mathrm{H}, t, J=7 \mathrm{~Hz}, \mathrm{Me}) .{ }^{13} \mathrm{C} \operatorname{NMR}(\delta$, p.p.m., $100 \mathrm{MHz}): 176$ (C6), 165 (C1), 143 (C2), 135, 133, 132, 130, 129, 128, $128,126(\mathrm{Ph}), 125(\mathrm{C} 3), 60\left(\mathrm{C} 3^{\prime}\right), 49\left(\mathrm{C}^{\prime}\right), 47(\mathrm{C} 4), 14(\mathrm{C} 5) . \mathrm{m} / \mathrm{z}(\mathrm{CI} /$ $\left.\mathrm{NH}_{3}\right): 322\left(M^{+}+\mathrm{H}, 33 \%\right), 276,248,216,105$ (100\%).

Crystal data

```
\(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}\)
\(M_{r}=321.36\)
Monoclinic, \(P 2_{\mathrm{d}} / c\)
\(a=10.746\) (1) A
\(b=14.319\) (1) \(\AA\)
\(c=10.998\) (1) \(\AA\)
\(\beta=93.52\) (1) \({ }^{\circ}\)
\(V=1689.1\) (2) \(\AA^{3}\)
\(Z=4\)
```

```
\(D_{x}=1.264 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 499
    reflections
\(\theta=10.2-20.9^{\circ}\)
\(\mu=0.09 \mathrm{~mm}^{-1}\)
\(T=150\) (2) K
Block, colourless
\(0.4 \times 0.3 \times 0.2 \mathrm{~mm}\)
```

Data collection

SMART 1K CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.757, T_{\text {max }}=1.000$
17984 measured reflections

3880 independent reflections 2850 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-18 \rightarrow 16$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0243 P)^{2}\right. \\ & +0.6441 P]\end{aligned}$
$w R\left(F^{2}\right)=0.097$
$S=1.09$
3880 reflections
294 parameters
All H -atom parameters refined
$+0.6441 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e}_{\mathrm{m}} \AA^{-3}$
$\Delta \rho_{\min }=-0.23 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0099 (9)

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 1$	$1.3432(18)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.476(2)$
$\mathrm{O} 1-\mathrm{C} 4$	$1.4577(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.323(2)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.2087(18)$	$\mathrm{C}^{\prime}-\mathrm{C} 3$	$1.468(2)$
$\mathrm{O} 3-\mathrm{C} 6$	$1.2246(17)$	$\mathrm{C}^{\prime}-\mathrm{C} 3^{\prime}$	$1.514(2)$
$\mathrm{N} 1^{\prime}-\mathrm{C} 6$	$1.3953(19)$	$\mathrm{C}^{\prime}-\mathrm{C} 21$	$1.490(2)$
$\mathrm{N} 1^{\prime}-\mathrm{C} 3^{\prime}$	$1.4620(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.501(2)$
$\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}$	$1.4745(19)$	$\mathrm{C} 6-\mathrm{C} 11$	$1.493(2)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 4$	$115.89(12)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	$58.56(9)$
$\mathrm{C} 6-\mathrm{N} 1^{\prime}-\mathrm{C} 3^{\prime}$	$121.45(12)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 2^{\prime}$	$122.97(14)$
$\mathrm{C} 6-\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}$	$124.68(12)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 21$	$117.27(13)$
$\mathrm{C} 3^{\prime}-\mathrm{N} 1^{\prime}-\mathrm{C} 2^{\prime}$	$62.08(9)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	$59.36(9)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	$124.01(14)$	$\mathrm{C} 21-\mathrm{C} 3^{\prime}-\mathrm{C} 2^{\prime}$	$122.77(13)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$125.83(14)$	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5$	$106.65(14)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$110.16(12)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{N} 1^{\prime}$	$121.39(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.56(14)$	$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 11$	$122.10(14)$
$\mathrm{C} 3-\mathrm{C} 2^{\prime}-\mathrm{N} 1^{\prime}$	$119.17(13)$	$\mathrm{N} 1^{\prime}-\mathrm{C} 6-\mathrm{C} 11$	$116.25(12)$
$\mathrm{C} 3-\mathrm{C} 2^{\prime}-\mathrm{C} 3^{\prime}$	$118.76(13)$		

All H atoms were located in a difference Fourier synthesis and were refined in isotropic approximation. Bond lengths: $\mathrm{Csp}^{2}-\mathrm{H}=$ 0.97 (1) and $0.98(1) \AA, \mathrm{Csp}^{3}-\mathrm{H}=0.96(2)-1.03(2) \AA, \mathrm{O}-\mathrm{H}=$ 0.82 (4) and 0.84 (4) \AA.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

References

Aldous, D. J., Dutton, W. M. \& Steel, P. G. (1999). Synlett, pp. 474-476.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Brzozowski, A. M., Grabowski, M. J., Stepien, A. \& Dauter, Z. (1988). Acta Cryst. C44, 332-334.
Chakrabarti, P. \& Dunitz, J. D. (1982). Helv. Chim. Acta, 65, 1555-1562.
Coldham, I., Collis, A. J., Mould, R. J. \& Robinson, D. E. (1995). Synthesis, pp. 1147-1150.
Ferraris, D., Drury, W. J. III, Cox, C. \& Lectka, T. (1998). J. Org. Chem. 63, 4568-4569.
Gopalakrishna, E. M. (1972). Acta Cryst. B28, 2754-2759.
Ohwada, T., Achiva, T., Okamoto, I., Shudo, K. \& Yamaguchi, K. (1998). Tetrahedron Lett. pp. 865-868.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Versions 6.01. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Turner, T. E., Fiora, V. C. \& Kendrick, W. M. (1955). J. Chem. Phys. 23, 1966.
Wipf, P. \& Fritch, P. C. (1994). J. Org Chem. 59, 4875-4886.
Zacharis, H. M. \& Trefonas, L. M. (1968). J. Heterocycl. Chem. 5, 343-349.

